

15.7 MMSCFD Syngas Unit

Designed by Linde; Commissioned around 2016; Only Operated for a few months.

Contact Edward Zhang, Director Plant Sales <u>edz@phxequip.com</u> 732-520-2187

1. Executive Summary

- This syngas unit was designed by Hydro-Chem (now Linde) to use landfill gas and / or natural gas to produce synthesis gas, which is then converted into paraffinic naphtha, diesel and wax by Fischer-Tropsch process.
- Major Equipment of this unit includes Reformers #1 & #2, Feed Heater, Feed Superheater, Hydrodesulfurizer, Flue Gas Steam Generator, Reformer Effluent Steam Generator, Dirty & Clean Steam Drums and Blowdown Drum.
- The syngas output flow rate is 15.7 MMSCFD (or 18,500 Nm³/hr) at 500 °F and 175 psig. The syngas has the following composition (mol %):

-	Hydrogen	43.01
-	Carbon Monoxide	16.37
-	Carbon Dioxide	8.34
-	Nitrogen	3.90
-	Methane	1.42
-	Argon	0.16
	\M/ator	26 70

- Water 26.79

H2 + CO content, 59 vol %, (9.3 MMSCFD or 11,000 Nm³/hr)

- Capacity may be varied from the control panel from 100% of design to 40% of design.
- The syngas can also be further processed depending on the desired final products such as ammonia and methanol. Some examples include:
 - Ammonia plant primarily comprises a syngas unit, a nitrogen unit and an ammonia synthesis unit.
 <u>https://www.linde-</u> engineering.com/en/process_plants/hydrogen_and_synthesis_gas_plants/gas_products/ammo nia/index.html)
 - Integrated methanol and acetic acid plants using carbon monoxide. <u>https://www.linde-</u> <u>engineering.com/en/process_plants/hydrogen_and_synthesis_gas_plants/gas_products/metha</u> <u>nol/index.html</u>
- This unit was commissioned around 2016, and operated for a few months.
- Feedstock can be landfill gas and/or natural gas.
 - Typical composition of landfill gas (vol %)
 Methane 53.54

	Hydrogen Carbon Monoxide Carbon Dioxide Oxygen Nitrogen Argon	0.11 0.22 33.57 0.21 11.83 0.52
	LHV, btu/SCF HHV, but/SCF	487.9 541.4
	Total sulfur (as COS)	150 (ppbv design)
	Temperature Pressure	43 °F 259 psig
-	Typical composition of Methane Ethane Carbon Dioxide Propane Nitrogen	natural gas (vol %) 91.5 5.0 0.5 0.5 2.5
	LHV, btu/SCF HHV, but/SCF	924.6 1024.0
	Total sulfur	5 (ppmv design)
	Temperature Pressure	70 °F 415 psig

• Complete documentation available.

2. Process Description

2.1 Feed Treatment

Natural gas for feed and fuel enter the plant and separates into two streams: one flowing to the reformer burner manifold, and one flowing as feed gas to the process. The feed natural gas is mixed with FT offgas and purified landfill gas and heated to 650 $^{\circ}$ F in the Feed Heater using process heat downstream of the Reformer Effluent Steam Generator.

2.2 Desulfurization & Deoxidation

The landfill gas and natural feed stocks contains sulfur compounds which are poisons to the reformer catalyst and should be removed prior to reforming. The heated feed gas is passed up through the hydrodesulfurizer which contains two catalyst beds. The bottom bed contains a Co-Mo hydrotreating catalyst, which converts organic sulfur compounds to hydrogen sulfide and converts oxygen to water. In addition, any olefins present are converted to saturated hydrocarbon.

The hydrotreated feed is then passed through the desulfurizer bed containing the zine oxide, which adsorbs the hydrogen sulfide. The desulfurizer bed is designed for a minimum catalyst life of 2 years (based on a total sulfur level of 3 ppmv in the combined feed stream).

2.3 Reforming

The desulfurized feed is mixed with steam that is heated in the Feed Superheater. Next, the mixed feed is passed to the catalyst tubes in an upfired, upflow, cylindrical reformers. Each reformer tube is packed with nickel catalyst. Reforming reaction and shift conversion occur. Both reactions are equilibrium limited based on the outlet temperature and pressure. The reformer exit conditions are 1600 °F. The overall reaction is endothermic, requiring heat supplied by the burner. The rest is supplied by natural gas. The flue gas leaving the furnace is used to superheat process feed, in the Feed Superheater, to generate steam in the Flue Gas Steam Generator and to preheat combustion air in the Combustion Air Preheater before being sent to the atmosphere.

2.4 Process Gas Cooling

The syngas product is cooler to 500 °F by the Feed Heater before being sent to the battery limit.

2.5 Waste Heat Recovery

The waste heat in the process gas and the reformer flue gas is used to generate steam at 250 psig in the Flue Gas Steam Generator and 410 psig in the Reformer Effluent Steam Generator. The process water is mixed with demineralized make-up water and degassed in the top section of the Deaerator using steam. The deaerated boiler feed water is pumped by the BFW Pumps to the Flue Gas Steam Generator. The makeup water for the Reformer Effluent Steam Generator is boiler feed water from the battery limit. Most of the steam from the Flue Gas Steam Generator is used as process steam; the rest is sent to the deaerator. Most of the clean steam from the Reformer Effluent Steam Generator is used as makeup process steam.

3. Consumption Data

Below are the consumption of raw materials and utilities for the production of 15.7 MMSCFD syngas:

Landfill Gas Feed, SCFH	119,710
FT Offgas Feed, SCFH	47,440
Natural Gas Feed, SCFH	30,300
Fuel Gas, SCFH	174,550
Natural Gas Fuel, SCFH	17,900
Export Steam, lb/hr	13,000
Clean Boiler Feed Water Makeup, lb/hr	15,000
Process Water, lb/hr	11,500
Demin Water Makeup, lb/hr	11,500
Import H2, SCFH	1,300
Import H2, SCFH (note 3)	100
Nitrogen, SCFH (note 1)	40,000
Nitrogen, SCFH (note 4)	5,000

Instrument Air, SCFM	50
Power, KW (note 2)	175

Notes:

- 1. Nitrogen is required only for 4 8 hours during startup and shutdown for purging the equipment.
- 2. Power for heat tracing is not included.
- 3. Hydrogen is required only for 4 8 hours during catalyst reduction of the ultrapurification catalyst.
- 4. Nitrogen is required only for 4 8 hours during catalyst reduction of the ultrapurification catalyst.

4. Major Equipment

A. Reformer #1 (PK-200-R-1A)

-	
Duty	16.2 MM BTU/hr
Size	144" OD
Tube Rating	225 psig @ 1783 °F
Tube Material	25 – 35 + Nb
Tubes	20 tubes of 5.563" OD X 50'
Number of Burners	1
Tube Weight	825 Lbs each
Reformer Weight	55,100 Lbs (without legs)
Shipping Weight	100,000 Lbs
Shipping Dimensions	12' 10.375" W X 13' 7" H X 64' 9" OAL

B. Reformer #2 (PK-200-R-1B)

-	
Duty	16.2 MM BTU/hr
Size	144" OD
Tube Rating	225 psig @ 1783 °F
Tube Material	25 – 35 + Nb
Tubes	20 tubes of 5.563" OD X 50'
Number of Burners	1
Tube Weight	825 Lbs each
Reformer Weight	55,100 Lbs (without legs)
Shipping Weight	100,000 Lbs
Shipping Dimensions	12' 10.375" W X 13' 7" H X 64' 9" OAL

C. Feed Heater (PK-200-E-1)

Size	331 Sq. Ft.
Туре	Hairpin
Material	CS / 304 SS
Shell Rating	260 psig @ 800 °F
Tube Rating	220 psig @ 790 °F
Configuration	Horizontal

D. Feed Superheater (PK-200-E-2)

Size	739 Sq. Ft.

Туре	Hairpin
Material	304 SS / Incoloy 601
Shell Rating	260 psig @ 800 °F
Tube Rating	220 psig @ 790 °F
Configuration	Horizontal

E. Hydrodesulfurizer (PK-200-V-1)

Size	58" ID X 10' S/S
Material	CS
Shell Rating	260 psig @ 800 °F
Configuration	Vertical
Heads	Dished
Support	Skirt
Internals	Packed Bed

F. Flue Gas Steam Generator (PK-200-B-1)

Duty	12.2 MM BTU/hr
Size	3775 Sq. Ft.
Material	CS
Shell Rating	280 psig @ 424 °F
Configuration	Horizontal

G. Reformer Effluent Steam Generator (PK-200-B-2)

Duty	4.9 MM BTU/hr
Size	445 Sq. Ft.
Material	CS
Shell Rating	460 psig @ 472 °F
Tube Rating	220 psig @ 620 °F
Configuration	Horizontal

H. Dirty Steam Drum (PK-200-V-2)

41" X 10'
CS
180 psig @ 424 °F
Horizontal
Dished

I. Clean Steam Drum (PK-200-V-3)

Size	48" X 10'
Material	CS
Configuration	Horizontal
Heads	Dished

J. Combustion Air Preheater (PK-200-E-3)

Duty	6.2 MM BTU/hr
Size	9452 Sq. Ft.
Material	CS

K. Dearator (PK-200-V-5)

Vessel Size	42" X 8'
Dome Size	24" X 6'
Material	CS
Rating	50 psig @ 300 °F
Configuration	Vertical / Horizontal
Heads	Dished

Most of the equipment is mounted on skids.

Skid #1A&B

PK-200-B-1	Flue Gas Steam Generator

- PK-200-V-2 Dirty Steam Drum
- PK-200-E-2 Feed Superheater

Skid #2A&B

- PK-200-B-2 Reformer Effluent Steam Generator
- PK-200-V-3 Clean Steam Drum
- PK-200-V-4 Blowdown Drum

Skid #3A&B

- PK-200-E-1 Feed Heater
- PK-200-V-5 Deaerator
- PK-200-V-1 Hydrodesulfurizer
- PK-200-P-1A BFW Pump A
- PK-200-P-1B BFW Pump B

<u>Skid #4</u>

No process equipment on this skid.

<u>Skid #5</u>

Pipe Rack

<u>Skid #6</u>

Pipe Rack

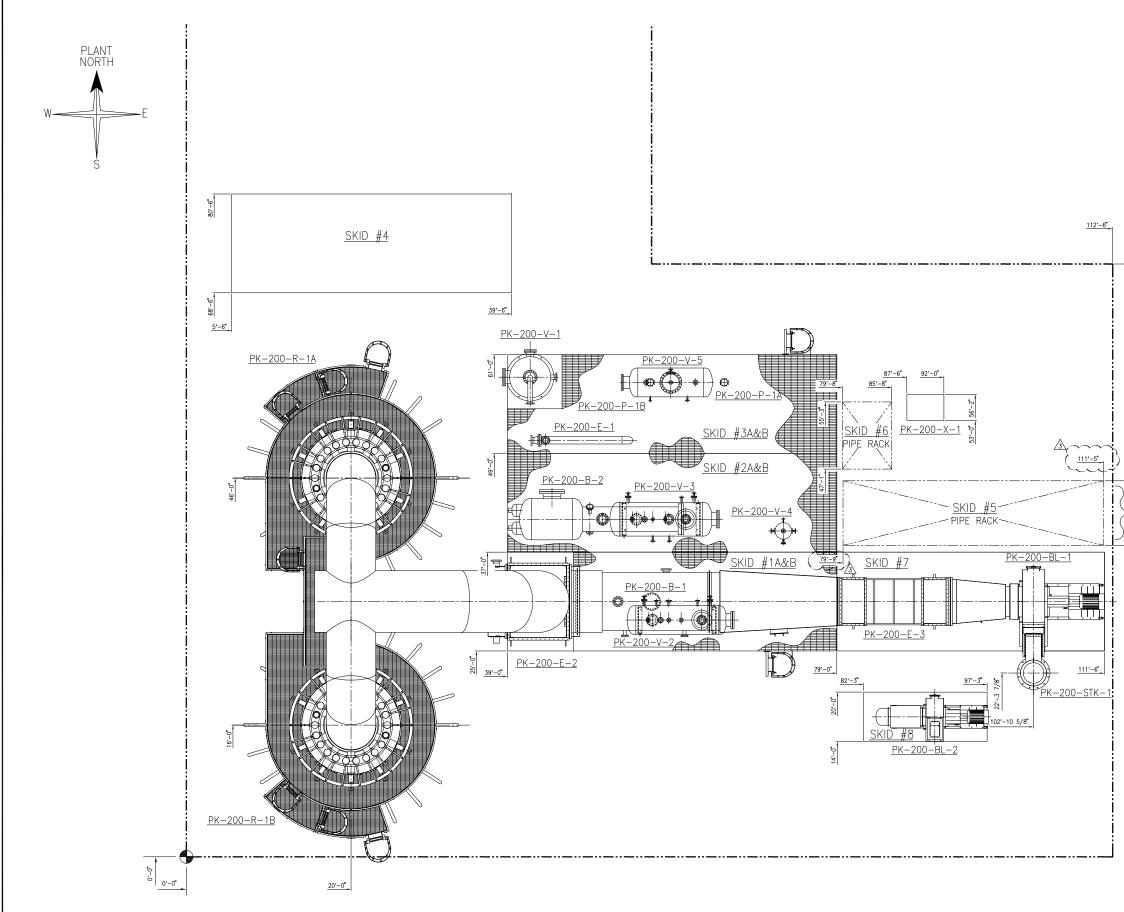
<u>Skid #7</u>

PK-200-E-3Combustion Air PreheaterPK-200-BL-1ID FanPK-200-STK-1Flue Gas Stack

<u>Skid #8</u>

PK-200-BL-2 FD Fan

Off-Skid Equipment


PK-200-R-1AReformer APK-200-R-1BReformer BPK-200-X-1Sulfur Dosing System

5. Process Flow Diagram

See attachment.

6. Reformer Specifications

See attachment.



EQUIPMENT LIST

PK-200-B-1
PK-200-B-2
PK-200-BI-1
PK-200-BL-2
PK-200-E-1
PK-200-E-2
PK-200-E-3
PK-200-P-1A
PK-200-P-1B
PK-200-R-1A
PK-200-R-1B
PK-200-STK-1
PK-200-V-1
PK-200-V-2
PK-200-V-3
PK-200-V-4
PK-200-V-5
PK-200-X-1

FLUE GAS STEAM GENERATOR REFORMER EFFLUENT STEAM GENERATOR 1.D. FAN FED HEATER FED SUPERHEATER COMBUSTION AIR PREHEATER BFW PUMP B REFORMER A REFORMER A REFORMER A REFORMER A REFORMER A NUMBUSTION DRUM DEARTATOR BCMDOWN DRUM DEARTATOR SULFUR DOSING SYSTEM

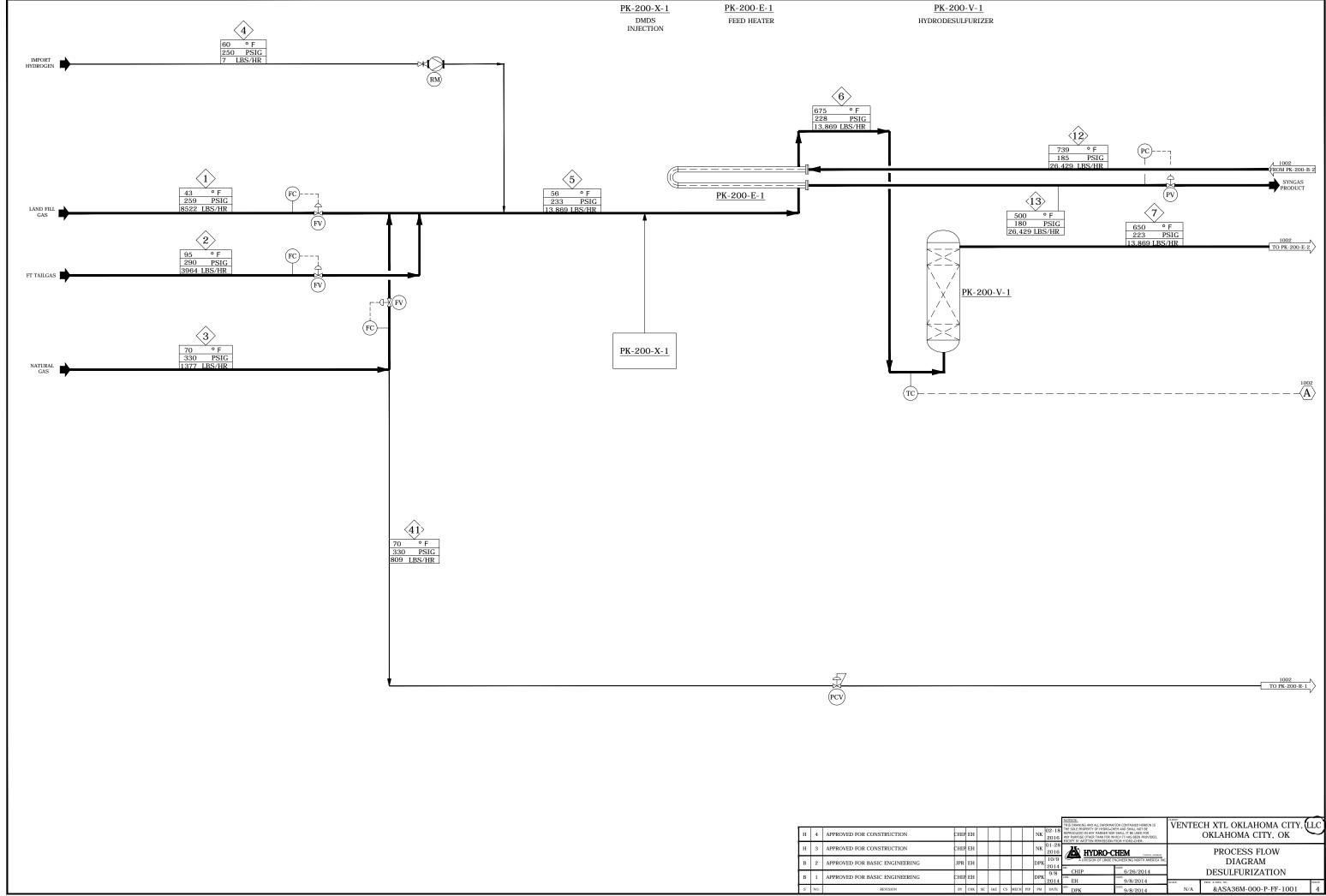
72'-0"

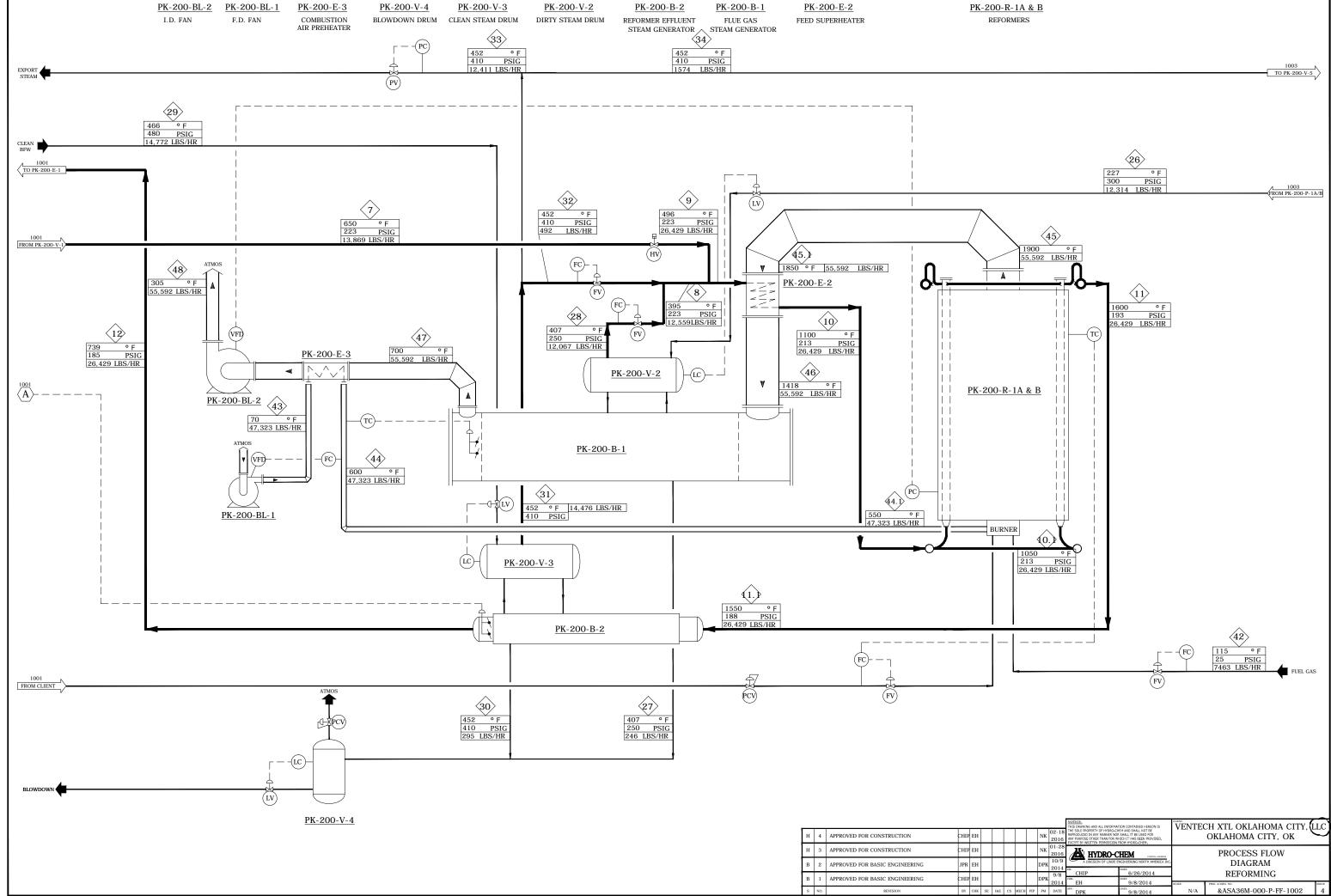
н	3	REVISED SKID #5 DIMENS	IONS		CDM	смс	FE		10-8 2015
н	2	ISSUE FOR CONSTRUCTION	N		CDM	смс	DK		6-3 2015
PR	1	PRELIMINARY ISSUE FOR	DESIGN		JBG	CNC	DK		11-3 2014
STATUS	ISSUE	R	EVISION		BY	CHK	APP	QA	DATE
THE SOLE REPRODU ANY PURI	E PROPER CED IN A POSE OTH	ALL INFORMATION CONTAINED HEREON IS TY OF HYDRO-CHEM AND SHALL NOT BE NY MANNER NOR, SHALL IT BE USED FOR NY MANNER NOR, SHALL IT BE USED FOR THAN FOR WHICH IT HAS BEEN PROVIDED, N PERMISSION FROM HYDRO-CHEM		ech xtl oki OKLAHOMA					L.
JBC	A DM	DRO-CHEM ONTON GEORGE SION OF LINDE ENGINEERING NORTH AMERICA, INC.		15.7 MM SYN PLANT	GAS				
CHK.: CN	С	DATE: 11-3-14	SCALE: NONE	PROJ. & DWG. NO.: &ASA36M-00)0-L	-ZP-	-100	0.00	1 3

PROCESS FLOW

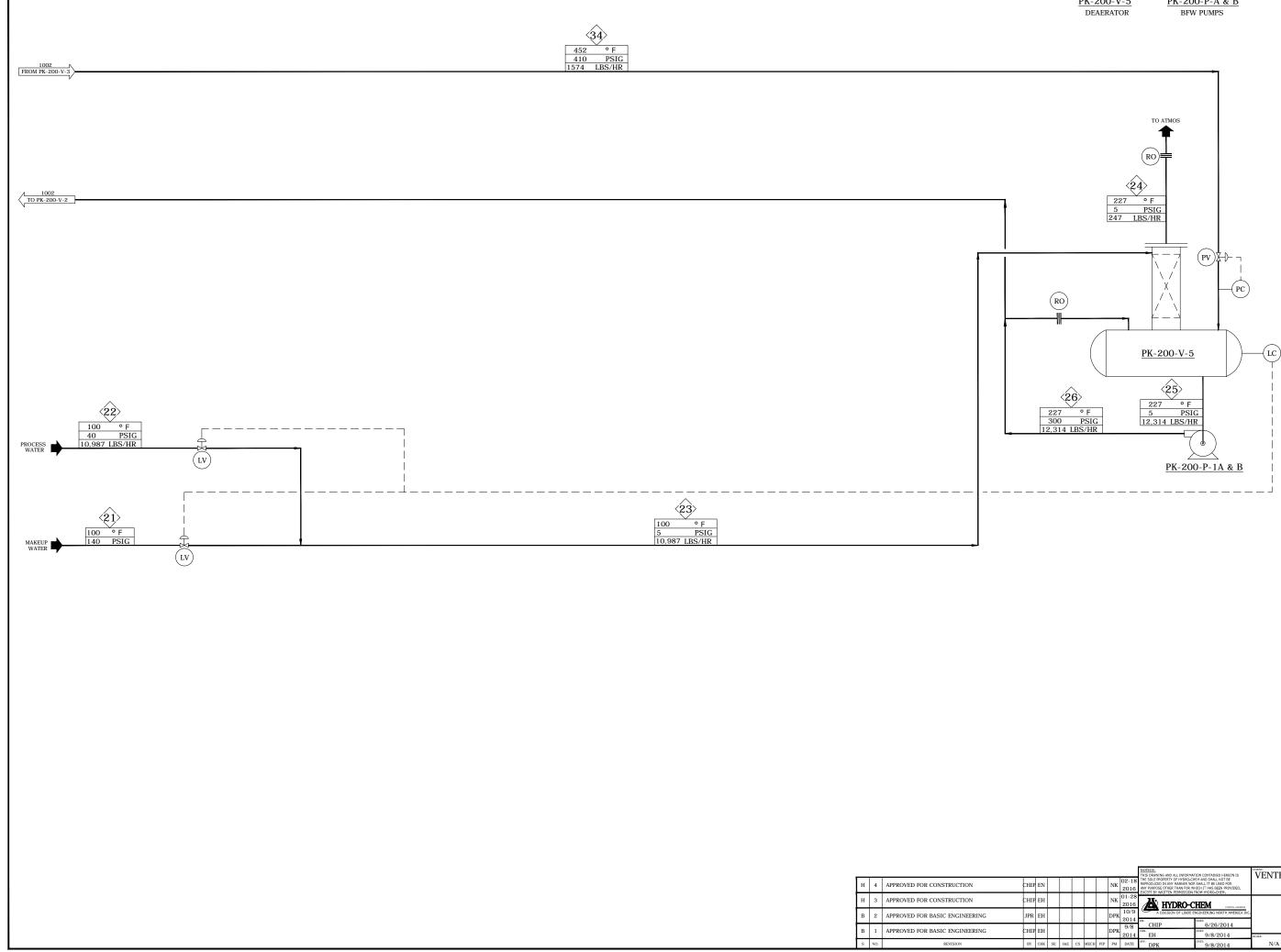
DIAGRAMS

Н	3	APPROVED FOR CONSTRUCTION	снір	EH	
Н	2	APPROVED FOR CONSTRUCTION	снір	EH	
в	1	APPROVED FOR BASIC ENGINEERING	ZTE	EH	
s	NO.	REVISION	BY	СНК	I


NOTICE: THE DRIVING AND ALL INFORMATION CONTAINED HERRON IS THE DRIVING AND ALL INFORMATION CONTAINED HERRON IS REPORTED IN ANY MINING AND ALL IT BE LEBO FOR ANY RIVERSE OTHER THAN FOR MINING IT HAS BEEN ROVORED, EXCRPT BY MINING AND INFORM-DEEN.								THIS DRAWING AND ALL INFORMA THE SOLE PROPERTY OF HYDRO-CI REPRODUCED IN ANY MANNER NO ANY PURPOSE OTHER THAN FOR W EXCEPT BY WRITTEN PERMISSION	VENTECH XTL OKLAHOMA CITY, LL OKLAHOMA CITY, OK			
						NK	02-18	N			DDOCECC FLOW	
							2016	MAX HYDRO-C	CHEM CANTON, GEORGIA	PROCESS FLOW		
						NK	01-28		ENGINEERING NORTH AMERICA INC.	DIAGRAM		
1							2016	ZACH E.	DATE 10/9/2014		COVED CHEET	
ł						DPK	10/9	ZACH E.	10/9/2014 DATE		COVER SHEET	
						DPK	2014	EH	10/0/0014	SCALE:	PROJ. & DWG. NO.:	ISSUE
	SE	I&E	CS	MECH	PIP	PM	DATE	DPK	10/9/2014	N/A	&ASA36M-000-P-FF-1000.001	3


DRAWING INDEX

DRAWING NUMBER	DRAWING REVISION	
&ASA36M-000-P-FF-100.001	$\begin{cases} 3 \end{cases}$	COVER SHEET
&ASA36M-000-P-FF-100.002		DRAWING INDEX
&ASA36M-000-P-FF-1001		DESULFURIZATION
&ASA36M-000-P-FF-1002		REFORMING
&ASA36M-000-P-FF-1003	{ 4 }	DEAERATION


н	3	APPROVED FOR CONSTRUCTION	СНІР	EH			
Н	2	APPROVED FOR CONSTRUCTION	СНІР	EH			
в	1	APPROVED FOR BASIC ENGINEERING	ZTE	EH			
s	NO.	REVISION	BY	CHK	SE	I&E	Γ

THE SOLE F REPRODUC ANY PURPO EXCEPT BY					THIS DRAWING AND ALL INFORMA THE SOLE PROPERTY OF HYDRO-CI REPRODUCED IN ANY MAINER NO ANY PURPOSE OTHER THAN FOR W EXCEPT BY WRITTEN PERMISSION	HEM AND SHALL NOT BE R SHALL IT BE USED FOR /HICH IT HAS BEEN PROVIDED,	VE	ENTE	CH XTL OKLAHOMA CITY, L OKLAHOMA CITY, OK		
			NK	02-18 2016	HYDRO-CHEM			PROCESS FLOW			
			NK	01-28 2016	DR.:			DIAGRAM			
			DPK	10/9	ZACH E.	10/9/2014 DATE:		DRAWING INDEX			
cs	MECH	_	PM	2014 DATE	EH APP:: DPK	10/9/2014	SCALE:	N/A	PROL & DWG. NO.: &ASA36M-000-P-FF-1000.002	ISSUE Q	

					EXCOPTION WRITTEN PERMISSION				
			NK	01-28 2016	HYDRO-C	HEM CANTON OFFICIAL		PROCESS FLOW	
			DPK		A DIVISION OF LINDE E	NGINEERING NORTH AMERICA INC.		DIAGRAM	
			DPK	9/8	CHIP	6/26/2014		REFORMING	
			DFK	2014	EH	9/8/2014	SCALE:	PROJ. & DWG. NO.:	ISSUE
s	MECH	PIP	PM	DATE	DPK	9/8/2014	N/A	&ASA36M-000-P-FF-1002	4

PK-200-V-5 DEAERATOR

												-	
NK 02-18 2016				NK	2016	NOTICE: THIS DRAWING AND ALL INFORMA' THE SOLE PROPERTY OF HYDRO-CP REPRODUCED IN ANY MANNER NOF ANY PURPOSE OTHER THAN FOR W EXCEPT BY WRITTEN PERMISSION I	IEM AND SHALL NOT BE SHALL IT BE USED FOR HICH IT HAS BEEN PROVIDED,	VE	NTEO	CH XTL OKLAHOMA CITY, L OKLAHOMA CITY, OK	LC		
					NK	01-28 2016	A HYDRO-CHEM		PROCESS FLOW				
					DPK		A DIVISION OF LINDE ENGINEERING NORTH AMERICA INC.				DIAGRAM		
					DPK	9/8	CHIP	6/26/2014			DEAERATION		
					DPK	2014	EH	0/0/0014	SCALE:		PROJ. & DWG. NO.:	ISSUE	
SE	I&E	CS	MECH	PIP	PM	DATE	DPK	DATE: 9/8/2014		N/A	&ASA36M-000-P-FF-1003	4	

Item No.		PK-200-	R-1 A&B	
Туре	Vertical, cylindrical, upflow, upfired			
Service	Steam-hydrocarbon reforming			
Absorbed Duty Total, MM Btu/hr	32.32			
Absorbed Duty per Cell, MM Btu/hr		.16		
Radiant Section Heat Loss, % Abs'd duty	5	.0		
Process Conditions	Inlet	Exit		
Temperature, °F		1050	1600	
Pressure, psig		213	193	
Tube Design				
Material			Modified HP 50 or equal	
Average Heat Flux (ID), Btu/hr ft2			13,856	
Design Tubewall Temperature, °F			1,783	
Design Pressure, psig			225	
Design Stress to rupture in 100,000 hrs, psi min			1,739	
Number of Tubes per Cell			20	
Fired Length, ft			46.270	
Total Length, ft			50.0	
Tube OD, inches (as cast)			5.563	
Tube ID, inches (as cast)			4,689	
Tube ID, inches (as bored)			4.814	
Catalyst Volume per Tube, cft			6.0	
Catalyst Weight per Tube, Ibs			507.9	
Unsound Wall Allowance, inches (as cast)			001.0	
Outside			1/32	
Inside			1/16	
Calculated Minimum Soundwall thickness, inches			0.338	
Design Minimum Sound Wall Thickness, inches			0.343	
Tube Bored			YES	
Tube RMS			125	
Furnace Layout			120	
Tube Spacing, CL to CL, inches (arc length)		Note 5	15.03	
CL to wall, inches			11.00	
Tube Circle diameter, inches min			105.25	
Shell thickness, inches			3/8	
Shell OD, inches			144.00	
Burner Layout				
Number of Burner(s) per Cell			1	
Burner Bolt Circle Diameter, inches estimated			By Burner Vendor	
Burner Circle Diameter, inches estimated			By Burner Vendor	
Flame Diameter, inches			By Burner Vendor	
Refractory (Floor, wall, and roof)		Туре	Thickness, in.	
Floor (towards flame)	Note 2	Superwool HT 8pcf	3	
Floor (remaining layers)	Note 2	Superwool Plus 10pcf	5	
Wall (towards flame)	Note 2	Superwool HT 8pcf	3	
Wall (remaining layers)	Note 2	Superwool Plus 10pcf	5	
Roof (towards flame)	Note 2	Superwool HT 8pcf	3	
Roof (remaining layers)	Note 2	Superwool Plus 10pcf	5	
Ducting		Firebox Stack	Firebox Ducting	
Shell thickness, inches		3/8	3/8	
Shell OD, inches		72	72	
Open ID, inches		55.25	55.25	
Insulation (hot face), Type		Superwool HT 8pcf	Superwool HT 8pcf	
Thickness (hot face), inches	Note 6	3	4	
Insulation (remaining layers - cold face), Type		Superwool Plus 10pcf	Superwool HT 8pcf	
Thickness (remaining layers - cold face), inches		5	4	

Item No.	PK-200-R-1 A&B								
Туре			Vertical, cylindrical, upflow, upfired						
Service	Steam-hydrod	Steam-hydrocarbon reforming							
Piping		Size, in	Schedule	Material					
Inlet									
Header		4	40	304H SS					
Trombones		1	80	304H SS					
Bottom Stub End		N/A	_	Note 4					
External Insulation		_	_	Superwool Plus					
Flanges	Note 4	1	600 lb.	316H SS					
Outlet									
Pigtails		1 1/2	160	Incoloy 800 HT					
Internal Insulation		_	_	Superwool HT					
Projected Tube Flange		4	300 lb.	Carbon Steel					
Blind Flange		4	300 lb.	Carbon Steel					
Header	Note 3	4	160	Incoloy 800 HT					
Downcomer	Note 3	6	160	Incoloy 800 HT					
Site Conditions									
Design Atmospheric Pressure, psia	14.11								
Minimum Design Metal Temperature, °F	Minimum Design Metal Temperature, °F								
Maximum Wind Velocity, mph				90					
ASCE 7-10 Seismic Values									
S₅				0.317					
S ₁				0.073					
Soil Bearing Load for Foundation Design, psf				3,000					
Notes									
1. The outlet header and pigtail wall thicknesses are des	signed bas	ed on							
1614 F (879 C) and 220 psig (15.2 barg) design cond	itions.								
2. The first layer (nearest flame) of insulating blanket is	designed f	or tempe	ratures up to 2100 F (1149 C)						
Engineering to verify the thickness.									
4. The reformer tubes shall not have tube size flanges a	t the inlet.	Instead	the tubes shall have a cone						
reducer that connects to a 1" flange that connects to	the trombo	nes.							
5. Tube circle to have enough room for 2 extra tubes (22	2 total).								
6. Insulation thickness to be checked for fluegas temperature of 1900 F (1038 C).									

I

Item No.		PK-200-	R-1 A&B	
Туре	Vertical, cylindrical, upflow, upfired			
Service	Steam-hydrocarbon reforming			
Absorbed Duty Total, GJ/hr	34.10			
Absorbed Duty per Cell, GJ/hr	17.			
Radiant Section Heat Loss, % Abs'd duty	5.			
Process Conditions	Inlet	Exit		
		566	871	
Temperature, °C				
Pressure, barg		14.7	13.3	
Tube Design				
Material			Modified HP 50 or equal	
Average Heat Flux (ID), kJ/hr m2			157,355	
Design Tubewall Temperature, °C			973	
Design Pressure, barg			15.5	
Design Stress to rupture in 100,000 hrs, bar min			119.9	
Number of Tubes per Cell			20	
Fired Length, m			14.1	
Total Length, m			15.2	
Tube OD, mm (as cast)			141.3	
Tube ID, mm (as cast)			119.1	
Tube ID, mm (as bored)			122.276	
Catalyst Volume per Tube, m3			0.17	
Catalyst Weight per Tube, kgs			230.3	
Unsound Wall Allowance, mm (as cast)				
Outside			0.8	
Inside			1.6	
Calculated Minimum Soundwall thickness, mm			8.59	
Design Minimum Sound Wall Thickness, mm			8.72	
Tube Bored			YES	
Tube RMS			125	
Furnace Layout				
Tube Spacing, CL to CL, mm (arc length)		Note 5	381.8	
CL to wall, mm			279.4	
Tube Circle diameter, mm min			2,673.4	
Shell thickness, mm			9.5	
Shell OD, mm			3,657.6	
Burner Layout			5,057.0	
Number of Burner(s) per Cell			1	
Burner Bolt Circle Diameter, mm estimated			By Burner Vendor	
Burner Circle Diameter, mm estimated			By Burner Vendor	
Flame Diameter, mm		Turce	By Burner Vendor	
Refractory (Floor, wall, and roof)		Type	Thickness, mm	
Floor (towards flame)	Note 2	Superwool HT 8pcf	76.2	
Floor (remaining layers)	Note 2	Superwool Plus 10pcf	127.0	
Wall (towards flame)	Note 2	Superwool HT 8pcf	76.2	
Wall (remaining layers)	Note 2	Superwool Plus 10pcf	127.0	
Roof (towards flame)	Note 2	Superwool HT 8pcf	76.2	
Roof (remaining layers)	Note 2	Superwool Plus 10pcf	127.0	
Ducting		Firebox Stack	Firebox Ducting	
Shell thickness, mm		9.5	9.5	
Shell OD, mm		1,828.8	1,828.8	
Open ID, mm		1,403.4	1,403.4	
Insulation (hot face), Type		Superwool HT 8pcf	Superwool HT 8pcf	
Thickness (hot face), inches	Note 6	76.2	101.6	
Insulation (remaining layers - cold face), Type		Superwool Plus 10pcf	Superwool HT 8pcf	

Item No.	PK-200-R-1 A&B							
Туре			Vertical, cylindrical, upflow, upfired					
Service	Steam-hydrocarbon reforming							
Piping		Size, in	Schedule	Material				
Inlet								
Header		4	40	304H SS				
Trombones		1	80	304H SS				
Bottom Stub End		N/A	_	Note 4				
External Insulation		_	—	Superwool Plus				
Flanges	Note 4	1	600 lb.	316H SS				
Outlet								
Pigtails		1 1/2	160	Incoloy 800 HT				
Internal Insulation		_	_	Superwool HT				
Projected Tube Flange		4	300 lb.	Carbon Steel				
Blind Flange		4	300 lb.	Carbon Steel				
Header	Note 3	4	160	Incoloy 800 HT				
Downcomer	Note 3	6	160	Incoloy 800 HT				
Site Conditions	Site Conditions							
Design Atmospheric Pressure, bara				0.97				
Minimum Design Metal Temperature, °C	Minimum Design Metal Temperature, °C							
Maximum Wind Velocity, km/h				145				
ASCE 7-10 Seismic Values								
S₅				0.317				
S ₁				0.073				
Soil Bearing Load for Foundation Design, kg/m2				14,644				
Notes								
1. The outlet header and pigtail wall thicknesses are desig	jned bas	ed on						
1614 F (879 C) and 220 psig (15.2 barg) design condition	ons.							
2. The first layer (nearest flame) of insulating blanket is de	esigned f	or tempe	ratures up to 2100 F (1149 C).					
Engineering to verify the thickness.								
4. The reformer tubes shall not have tube size flanges at t	the inlet.	Instead	the tubes shall have a cone					
reducer that connects to a 1" flange that connects to the	e trombo	nes.						
5. Tube circle to have enough room for 2 extra tubes (22 t	total).							
6. Insulation thickness to be checked for fluegas temperat	ture of 19	900 F (10	138 C).					

For more details or to discuss this plant, contact:

Ed Zhang, Director Plant Sales edz@phxequip.com 732-520-2187