

600 TPD AMMONIA PLANT FOR SALE

	Capacity:	600 TPD	
	Year Started:	1967	
	Year Shut Down:	2011	
Many upgrades in the past years			
	Feedstock: (can be converted)	Naphtha to natural gas)	1
	Technology: Mitsubi	ishi Chemical (Japan)	
	Engineering: Toyo	o (Japan)	
	Product Specification	ns:	5 4 4 4 H
	• Ammonia (%) 99.5 min.	
	• Moisture (%)	0.5 max.	
	• Oil (ppm)	5.0 max.	

Major Equipment:

- 1^{st} and 2^{nd} Reformers
- CO2 Absorber
- Ammonia Absorber
- 1st Shift Converter
- Synthesis Converter
- Reactor
- Separators

Phoenix Equipment Corporation <u>www.phxequip.com</u> +1 732 442 6990

Jesse Spector Vice President jesses@phxequip.com

Edward Zhang Plant Sales Manager edz@phxequip.com

BRIEF PROCESS DESCRIPTION

In the primary reformer, feed gas is mixed with steam, preheated by exchange with high temperature shift effluent, and then further heated in the reformer convection section. The effluent from the primary reformer and process air are mixed in the top of the secondary reformer. Conversion of the CO to CO2 in the reformed gas stream is achieved catalytically in ammonia converter. The synthesis stream leaving the shift converter contains carbon dioxide on a dry gas basis. It is necessary to remove all carbon dioxide from the synthesis gas before entering the ammonia synthesis loop.

CONTACT US FOR MORE DETAILS

Contact Phoenix Equipment if you have any plants or equipment for sale